При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

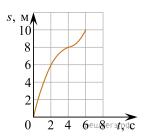
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Если в наборе дифракционных решёток имеются решётки с числом штрихов 50; 75; 100; 150; 200 на длине l=1 мм, то наибольший период d имеет решётка с числом штрихов:

- 1) 50
- 2) 75
- 3) 100
- 4) 150
- 5) 200

2. В таблице представлено изменение с течением времени координаты автомобиля, движущегося с постоянным ускорением вдоль оси Ox.

Момен	т времени t, с	0,0	2,0	4,0
Коор	одината x , м	-3,0	0,0	9,0


Проекция ускорения a_x автомобиля на ось Ox равна:

- 1) 1.0 m/c^2 2) 1.5 m/c^2 3) 2.0 m/c^2 4) 2.5 m/c^2 5) 3.0 m/c^2

3. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=30$ км/ч, второй — $<v_2>=33$ км/ч, третий — $<v_3>=15$ км/ ч, то всю трассу велосипедист проехал со средней скоростью <υ> пути, равной:

- 1) 26 км/ч
- 2) 25 км/ч
- 3) 24 км/ч
- 4) 23 км/ч
- 5) 22 km/q

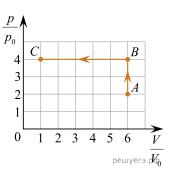
4. На рисунке приведен график зависимости пути *s*, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала до отсчёта времени тело прошло путь s = 10 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:

1) 10 м 2) 8 M 3) 6 M 4) 4 M5) 2 M

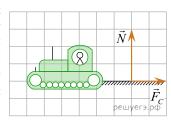
5. К вертикальному борту хоккейной коробки подлетела шайба со скоростью, модуль которой $v_1 = 25 \, \frac{\mathrm{M}}{c}$, и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $\upsilon_2 = \upsilon_1$. Если модуль изменения импульса шайбы при ударе о борт $|\Delta p|=8,0$ $\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{2}$, то масса m шайбы равна:

6. Шар объемом V = 14,0 дм³, имеющий внутреннюю полость объёмом $V_0 = 13,0$ дм³, плавает в воде $\rho_1 = 1,0 \cdot 10^3$ кг/м³, погрузившись в нее ровно наполовину. Если массой воздуха в полости шара пренебречь, то плотность ρ_2 вещества, из которого изготовлен шар, равна:

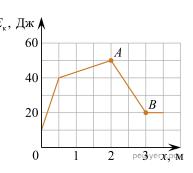
Примечание. Объём V шара равен сумме объёма полости V_0 и объёма вещества, из которого изготовлен шар.

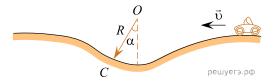

7. Число N_1 атомов лития $\left(M_1=7\ rac{\Gamma}{ ext{MOJL}}
ight)$ имеет массу $m_1=1\ \Gamma,\ N_2$ атомов кремния $\left(M_2=28\ rac{\Gamma}{
m MOJIb}\right)$ имеет массу $m_2=4\ \Gamma$. Отношение $rac{N_1}{N_2}$ равно:

1)
$$\frac{1}{4}$$
 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4


8. Если давление p_0 насыщенного водяного пара при некоторой температуре больше парциального давления p водяного пара в воздухе при этой же температуре в n=3,1 раза, то относительная влажность ф воздуха равна:

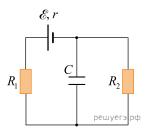
4) 64 %


9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A,B,C связаны соотношением:

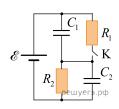

- 1) $U_C > U_B > U_A$ 2) $U_B > U_A > U_C$ 3) $U_A > U_B > U_C$ 4) $U_C = U_B > U_A$ 5) $U_C > U_B = U_A$
- 10. Физической величиной, измеряемой в джоулях, является:
 - 1) индуктивность
- 2) сила Лоренца
- 3) энергия магнитного поля
- 4) сила тока 5) сила Ампера
- **11.** Период полураспада радиоактивного изотопа полония $^{210}_{84}Po$ равен $T_{1/2}=138$ сут. Если начальная масса изотопа полония m_0 =968 мг, то через промежуток времени $\Delta t=414$ сут масса m нераспавшегося изотопа полония будет равна ... мг.
- 12. При боронировании горизонтального участка поля трактор движется с постоянной скоростью. На рисунке изображены нормальная составляющая силы реакции \vec{N} грунта и сила сопротивления движению, действующие на борону. Если сила \vec{F} , с которой трактор тянет борону направлена горизонтально, а модуль этой силы $\vec{F}=400~{\rm H}$, то масса m бороны равна ... кг.

13. На рисунке приведён график зависимости кинетической энергии E_{κ} тела, движущегося вдоль оси Ox, от координаты x. На участке AB модуль результирующей сил, приложенных K телу, равен ... Н.

14. Автомобиль массой m=1,0 т движется по дороге со скоростью, модуль которой $\upsilon=72\frac{^{\rm KM}}{^{\rm H}}$. Профиль дороги показан на рисунке. В точке C радиус кривизны профиля R=0,17 км. Если направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$, то модуль силы F давления автомобиля на дорогу равен ... кH.



15. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m=4,00 кг, а площадь поперечного сечения S=20,0 см², содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого $p_0=100$ кПа. Если начальная температура газа и объем $T_1=270$ К и $V_1=3,00$ л соответственно, а при изобарном нагревании изменение его температуры $\Delta T=180$ К, то работа A, совершенная силой давления газа, равна ... Дж.

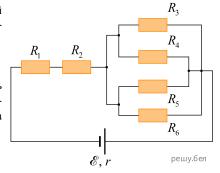


- **16.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине h_1 = 80 м температура воды ($\rho=1,0\frac{\Gamma}{\text{см}^3}$) $t_1=7,0^{\circ}\text{C}$, а объём пузырька V_1 . Если атмосферное давление $p_0=1,0\cdot 10^5$ Па, то на глубине $h_2=2,0$ м, где температура воды $t_2=17^{\circ}\text{C}$, на пузырёк действует выталкивающая сила, модуль которой $F_2=3,5$ мН, то объем пузырька V_1 был равен ... мм 3
- **17.** Идеальный одноатомный газ, количество вещества которого $\nu=10$ моль, при изобарном охлаждении отдал количество теплоты $|Q_{\text{отд}}|=32$ кДж. Если при этом объем газа уменьшился в k = 1,5 раза, то конечная температура газа t_2 равна ... ${}^{\mathbf{o}}\mathbf{C}$.

- **18.** На катод вакуумного фотоэлемента, изготовленного из никеля $(A_{\text{вых}} = 4,5 \text{ pB})$, падает монохроматическое излучение. Если фототок прекращается при задерживающем напряжении $U_3 = 7,5 \text{ B}$, то энергия E падающих фотонов равна ... эВ.
- **19.** Электрическая цепь состоит из источника постоянного тока, конденсатора ёмкостью C=6,0 мкФ и двух резисторов, сопротивления которых $R_1=R_2=5,0$ Ом (см. рис.). Если внутреннее сопротивление источника r=2,0 Ом, а заряд конденсатора q=180 мкКл, то ЭДС источника тока ϵ равна ... **В**.

- **20.** Электрон равномерно движется по окружности в однородном магнитном поле, модуль индукции которого B=24 мТл. Если радиус окружности R=0,4 мм, то кинетическая энергия $W_{\rm K}$ электрона равна ... э**B**.
- **21.** На дне сосуда с жидкостью, абсолютный показатель преломления которой n = 1,50, находится точечный источник света. Если площадь круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, $S = 740 \text{ см}^2$, то высота h жидкости в сосуде равна ... **мм**. Ответ округлите до целых.
- **22.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=40$ мкФ, $C_2=120$ мкФ, ЭДС источника тока $\varepsilon=90.0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1 = 480$ нм дифракционный максимум третьего порядка ($m_1 = 3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2 = 4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}$ Au. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~{\rm cyr.},$ то за промежуток времени $\Delta t=8,1~{\rm cyr.}$ распадётся ... тысяч ядер $^{198}_{79}$ Au.

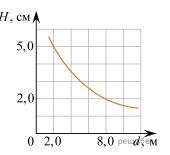

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\rm A}{\rm c}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \,\mathrm{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6\ \frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}\ {
 m H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

6/7

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

